THE INTERACTION OF ELECTROPHILIC SILANES (Me_3Six , $x = Clo_4$, I, CF_3So_3 , Br, Cl) WITH NUCLEOPHILES. THE NATURE OF SILVLATION MIXTURES IN SOLUTION.

Alan R Bassindale* and Tim Stout

Chemistry Department, The Open University, Walton Hall, Milton Keynes, MK7 6AA, U.K.

<u>Summary</u>. Silanes, Me₃SiX, and Nucleophiles, Nu, form 1:1 salts, Me₃SiN ux^{-} in solution. The effect of both nucleophile and silane on salt formation has been studied, and the implications for the design of more efficient silylation mixtures are discussed.

Mixtures of electrophilic trimethylsilyl compounds and nucleophiles, such as amines and amides, are common silylation agents¹⁻³, and salts <u>1</u> have frequently been invoked as the active silylation species⁴⁻⁷

$$Me_3 six + Nu \rightleftharpoons Me_3 si Nux$$
 -1
1

There is evidence for such salt formation in solution in some cases^{8,9}, and the x-ray crystal structure of a salt 1(X = I, Nu = pyridine) has recently been obtained¹⁰.

As a first stage in a programme investigating the mechanism of silvlations using highly electrophilic silanes (X = ClO_4 , I, CF_3SO_3) we have studied, by ²⁹Si, ¹³C and ¹H n.m.r. spectroscopy and conductivity measurements, the structures in solution, of silane-nucleophile mixtures. We report that for a wide range of nucleophiles, Nu, and Me₃SiX, the equilibrium shown in equation <u>1</u> lies substantially to the right, with <u>1</u>, being the almost exclusive species in CD_2Cl_2 , $CDCl_3$ or CD_3CN solution. A wide variety of nucleophiles forming salts, <u>1</u>, with Me₃SiOSO₂CF₃ is given in the Table, together with the ²⁹Si n.m.r. chemical shifts of 1, and other data discussed below.

An interesting anomaly was the reaction between $Me_3SiOSO_2CF_3$ and trimethylamine (a common nucleophile used in silylations) which gives a solid salt^{4,11}, but in solution at ambient temperature consists almost exclusively of unchanged reactants. However at 190 K $\underline{1}(X = I \text{ or } CF_3SO_3, Nu = TEA)$ was the major species in CD_2Cl_2 solution ($\delta^{29}Si \underline{1}$, 46.0 p.p.m.).

As one of the aims of our work is to develop more efficient silulation agents it was necessary to determine the relative effectiveness of different Me_3SiX and Nu in forming salts. To determine the relative abilities of $Me_3SiX(X = ClO_4, CF_3SO_3, I, Br, Cl, OOCCH_3)$ to form the four-coordinate silicon salts <u>1</u>, we chose the common silulation mixtures of Me_3SiX with N-trimethylsilulimidazole (NTMSIm). In these experiments mixtures of two Me_3SiX compounds (2 mmole in each) were added to NTMSIM (2 mmole) in CD_2Cl_2 (2 cm³) and the n.m.r.

spectra used to determine which of the silanes reacted with NTMSIm. For example, in the case of trimethylsilylperchlorate (TMSP), TMSI and NTMSIm, the ²⁹Si n.m.r. spectrum showed only peaks assignable to the bistrimethylsilylimidazolium ion (δ 26.6 ppm) and TMSI (δ 10.2 ppm). No peak at δ 46 ppm (TMSP) was observed. Therefore TMSP preferentially coordinates to NTMSIm to form <u>1</u> (Nu=NTMSIm; X=ClO₄). A complete series of competition reactions led to the order X=ClO₄>I>CF₃SO₃>Br>>Cl>OAc for effectiveness in salt formation. We also note that with the nucleophiles in the Table salt formation is essentially complete for X=ClO₄, CF₃SO₃ and I, whereas for X=Br equilibrium is incomplete, to varying extents, and for X=Cl and OAc, immeasurably small, at ambient temperature. For X=Cl and Nu=NTMSIm, salt formation is almost complete at 180 K, but for X=OAc no salt formation has been observed to date.

Similar experiments were carried out to determine the effectiveness of the nucleophiles. Competition reactions between nucleophiles, Nu and Nu' allowed the equilibrium constants for reaction 2 to be determined.

2

+

The ²⁹Si n.m.r. spectra of equimolar mixtures of Nu, Nu' and TMST (or TMSI) always consisted of a single resonance at v_3 , intermediate between v_1 (<u>1</u>,Nu) and v_2 (<u>1</u>,Nu'). The equilibrium shown in equation 2 is therefore fast on the n.m.r. time scale, and the equilibrium constant, K, can be determined simply from v_1 , v_2 and v_3 . These competition reactions showed that the ability to form salts with Me₃SiX decreases in the order, Nu=NMI>DMAP>HMPA>DMI>NMPO>PNO> TPPO>DMPU>2,>4DMP>NMP>DMF>3,5DMP>DMEV>PY(>TEA). The Table also gives K_{rel} for reaction 2 relative to NMP. (For nucleophiles with K_{rel}>>1 the value was determined from several experiments by substitution).

No detailed analysis of these results is attempted here, but it is worth noting that there is a fair correlation between $\ln K_{rel}$ and the Taft β -constant¹² which is usually taken as a measure of nucleophilicity (high β -values indicate high nucleophilicity). Similarly, and not unreasonably,¹³ there is good correlation between the ²⁹Si n.m.r. shift of <u>1</u> and $\ln K_{rel}$, with the most readily formed complexes having the highest frequency chemical shifts.

The results in the Table can be used to aid efficient silylation procedures. Chojnowski⁸, Frye⁷, Choudhary and Hernandez⁶ and ourselves⁹ have all recently suggested that the first step in many silylations, is a pre-equilibrium quaternisation of a nucleophile (equation 1). Frye⁷ showed that powerful nucleophiles such as DMAP, produced large rate increases in the alcoholysis of Ph_2SiCl_2 . A number of different nucleophiles were studied and where the nucleophiles in Frye's work and this study were the same there is a remarkably good correlation between our lnK_{rel} and lnk, for silylation. Choudhary and Hernandez⁶ found that DMAP promoted certain silylations whereas triethylamine and pyridine did not. These results are consistent with our findings and suggest that the best silylation mixtures are those containing a reasonable concentration of salts, <u>1</u>. Our results also help to explain the superiority of trimethylsilyltriflate and iodide - nucleophile combinations.

Corey¹⁴ routinely uses DMF as a solvent in combination with ^tBuMe₂SiCl and imidazole. The role of the DMF, as solvent, could be to aid pre-equilibrium salt formation, either with DMF itself, or imidazole. Table: ²⁹ Si n.m.r. chemical shifts and Relative Equilibrium Constants for salts, $\underline{1}$, from the reaction of Nucleophiles with Me₃SiOSO₂CF₃ in CD₂Cl₂^a

	Nucleophile	Abbreviation	δ ²⁹ si ^b	K c rel	lnK rel	β ^đ
1.	Pyridine	PY	42.3	0.10	-2.3	0.64
2.	Dimethyethylene urea	DMEU	40.1	0.11	-2.2	0.75
3.	3,5-Dimethylpyridine	3,5DMP	41.2	0.55	-0.6	0.70
4.	Dimethylformamide	DMF	44.0	0.81	-0.2	0.69
5.	N-methylpyridone	NMP	39.4	1.0	0.0	0.78
6.	2,4-Dimethylpyridine	2,4DMP	40.8	1.2	0.2	0.74
7.	Dimethylpropylene urea	DMPU	36.6	9.0	2,2	0.79
8.	Triphenylphosphine oxide	TPPO	37.5	11.0	2.4	0.94
9.	Pyridine N-oxide	PNO	49.4	66	4.2	0.85
10.	N-methyl-2-pyridone	NMPO	35.8	182	5.2	0.78
11.	1,2-Dimethylimidazole	DMI	25.1	5430	8.6	-
12.	Hexamethylphosphoramide	HMPA	28.8	9900	9.2	1.05
13.	4-N,N dimethylaminopyridine	DMAP	31.7	32800	10.4	0.87
14.	N-methylimidazole	NMI	26.8	32800	10.4	0.82
15.	N,N,N',N'-tetramethylurea	TMU	36.5	-	-	-
16.	N-trimethylsilylimidazole	NTMSIm	26.6	-	-	-

a. Typically the procedure was as follows. NMI (2 mmole) was added to $Me_3SiOSO_2CF_3$ (2 mmole) in $CD_2Cl_2(2 \text{ cm}^3)$. The $Me_3SiOSO_2CF_3$ ²⁹Si n.m.r. resonance at $\delta 46$ ppm disappeared immediately and was replaced by a single resonance at 826.8 ppm. In the ¹H n.m.r. spectrum the H-2, H-3 and H-4 resonances of NMI were deshielded relative to NMI alone (e.g. H-2; NMI $\delta 7.41$ ppm; NMI/TMST $\delta 8.39$ ppm). The ²⁹Si n.m.r. spectrum of a similar mixture of Me_3SiI and NMI (TMSI: $\delta^{29}Si$ lo.2 ppm) was identical to that of the NMI/TMST spectrum, confirming that the reaction shown in equation 1 is essentially complete. Similar experiments were carried out for the other nucleophiles. The conductivity of the salt solution was high whereas the individual components were almost non-conducting. In many cases solid adducts, 1, were isolated and had satisfactory microanalytical data.

b. at 17.76 MHz and relative to internal TMS.

c. Equilibrium constant for reaction 2, Nu¹=NMP

d. Taft β -constant from ref 12.

From our results, and those of others, it appears that an ideal silvlation mixture should consist of: a polar solvent to stabilise salts, $\underline{1}$,; a highly electrophilic silane, such as Me₃SiOSO₂CF₃, Me₃SiOClO₃ or Me₃SiI, a strong nucleophile, such as NMI, DMAP or HMPA; and, particularly in the presence of HMPA, a proton acceptor, such as triethylamine. We find that NMI is both an excellent nucleophile and proton acceptor and in combination with trimethylsilyltriflate in dichloromethane gives excellent results in silvlations.

References

- A.E.Pierce, 'Silylation of Organic Compounds' Pierce Chemical Co., Rockford, Illinois (1968).
- E.W.Colvin, 'Silicon in Organic Synthesis' Butterworths Monographs in Chem. and Chem. Eng. Butterworths (1981).
- 3. W.P.Weber, 'Silicon Reagents for Organic Synthesis' Springer-Verlag, Berlin (1983).
- 4. G.A.Olah and S.C.Narang. Tetrahedron, 38, 2225 (1982).
- 5. H.Emde et.al. Synthesis 1 (1982).
- 6. S.K.Chaudhary and O.Hernandez, Tetrahedron Letters, 99 (1979).
- 7. H.K.Chiu, M.D.Johnson and C.L.Frye, J. Organometal. Chem. 271, 327 (1984).
- 8. J.Chojnowski, M.Cypryk and J.Michalski, J. Organometal. Chem., 154, 33 (1978).
- 9. A.R.Bassindale and T.Stout, J. Organometal. Chem., 238, C41 (1982).
- 10. K.Hensen, T.Zengerly, P.Pickel and G.Klebe, Angew. Chem. Int. Ed. Engl. 22, 725 (1983).
- 11. D.Domsch, Diplomarbeit, Universitat Stuttgart (1978).
- R.W.Taft, T.Gramstad and M.J.Kamlet, <u>J. Org. Chem.</u>, <u>47</u>, 4557 (1982) and references therein.
- 13. W.McFarlane and J.M.Seaby, J. Chem. Soc. Perkin Trans.II. 1561 (1972).
- 14. E.J.Corey and A.Venkateswarlu, J. Am. Chem. Soc. 94, 6190 (1972).

(Received in UK 1 May 1985)